

HELLDIVER
v0.8.0+commit.7dd6d404

v0.8.0

 Low-Risk

Low-risk code

 Medium-Risk

Medium-risk code

High-Risk

High-risk code

b s c - te s tn e t

0 x e 8 2 8 a e c c 3 8 d 7 d 1 8 c f c d 4 e f 3 6 5 3 1 6 8 d 3 6 8 a a 6 0 0 3 e

[Disclaimer]

AuditBlock is not liable for any financial losses incurred due to its services. The information provided in this contract audit should

not be considered financial advice. Please conduct your research to make informed decisions.

Types of Severities

High

A high-severity issue or vulnerability means that your smart contract

can be exploited. Issues on this level are critical to the smart contract’s

performance or functionality, and we recommend these issues be fixed

before moving to a live environment.

Medium

The issues marked as medium severity usually arise because of errors

and deficiencies in the smart contract code. Issues on this level could

potentially bring problems, and they should still be fixed.

Low

Low-level severity issues can cause minor impact and or are just

warnings that can remain unfixed for now. It would be better to fix

these issues at some point in the future.

Informational

These are severity issues that indicate an improvement request, a

general question, a cosmetic or documentation error, or a request

for information. There is low-to-no impact.

1021 - HELLDIVER

Techniques and Methods

The overall quality of code.

• Use of best practices.

• Code documentation and comments match logic and expected behavior.

• Token distribution and calculations are as per the intended behavior

mentioned in the whitepaper.

• implementation of ERC-20 token standards.

• Efficient use of gas.

• Code is safe f rom re-entrance and other vulnerabilities.

The following techniques, methods, and tools were used to review all the smart contracts.

Structural Analysis

In this step, we have analyzed the design patterns and structure of smart

contracts. A thorough check was done to ensure the smart contract is structured in

a way that will not result in future problems.

Static Analysis

Static analysis of smart contracts was done to identify contract vulnerabilities. In this

step, a series of automated tools are used to test the security of smart contracts.

Code Review / Manual Analysis

Manual analysis or review of code was done to identify new vulnerabilities or verify the

vulnerabilities found during the static analysis. Contracts were completely manually

analyzed, and their logic was checked and compared with the one described in the

whitepaper. Besides, the results of the automated analysis were manually verified.

Gas Consumption

In this step, we have checked the behavior of smart contracts in production. Checks

were done to know how much gas gets consumed and the possibilities of optimization

of code to reduce gas consumption.

Tools and Platforms Used for Audit

Remix IDE, Truffle, Truffle Team, Solhint, Mythril, Slither, Solidity statistic analysis.

1021 - HELLDIVER

0
Issues Found

High Medium

Low Informational

High Medium Low Informational

Open Issues

Acknowledged Issues

0

0

0

0

0

0

0

0

Name HELLDIVER

Method

Scope of Audit

Manual Review, Functional Testing, Automated Testing etc.

The scope of this audit was to analyze the contract codebase for

quality, security, and correctness.

Audit Team AuditBlock

Partially Resolved Issues 0 0 0 0

Resolved Issues 0 0 0 0

10021 HELLDIVER.sol Pass

1021 - HELLDIVER

Re-entrancy Tautology or contradiction

Timestamp Dependence Missing Zero Address Validation

Gas Limit and Loops Return values of low-level calls

Exception Disorder Revert/require functions

Gasless Send Private modifier

Use of tx.origin Using block.timestamp

Compiler version not fixed Multiple Sends

Address hardcoded Using SHA3

Divide before multiply Using suicide

Integer overflow/underflow Using throw

Dangerous strict equalities Using inline assembly

Smart Contract Weakness Classification

(SWC) Vulnerabilities for Attacks

1021 - HELLDIVER

Phase 1

High Severity Issues

No issues found

M edium Severity Issues

No issues found

Low Severity Issues

No issues found

Informational Severity Issues

0.

Phase 2

Context._msgData() (contracts/HELLDIVER.sol#23-25)
ERC20._burn(address,uint256) (contracts/HELLDIVER.sol#521-537)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code

Pragma version^0.8.0 (contracts/HELLDIVER.sol#6) allows old versions
Pragma version^0.8.0 (contracts/HELLDIVER.sol#89) allows old versions
Pragma version^0.8.0 (contracts/HELLDIVER.sol#180) allows old versions
Pragma version^0.8.0 (contracts/HELLDIVER.sol#208) allows old versions
solc-0.8.24 is recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

1021 - HELLDIVER

https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

Phase 3

1021 - HELLDIVER

Closing Summary

In this report, we have considered the security of this HELLDIVER We

performed our audit according to the procedure described above.

No issues were identified during the audit and classified by severity.

Recommendations and best practices were provided to improve code quality and

security posture. The team has acknowledged all findings.

Disclaimer

AuditBlock does not provide security warranties, investment advice, or endorsements

of any platform. This audit does not guarantee the security or correctness of the

audited smart contracts. The statements made in this document should not be

interpreted as investment or legal advice. The authors are not liable for any decisions

made based on the information in this document. Securing smart contracts is an

ongoing process. A single audit is not sufficient. We recommend that the platform's

development team implement a bug bounty program to encourage further analysis of

the smart contract by other third parties

1021 - HELLDIVER

AuditBlock

AuditBlock is a blockchain security company that provides professional services

and solutions for securing blockchain projects. They specialize in smart contract

audits on various blockchains and offer a range of services

100+

Audits Completed

$1M

Secured

100K

Lines of Code Audited

https://auditblock.report/

 https://t.me/AuditBlock

 https://github.com/AuditBlock

https://twitter.com/0AuditBlock

1021 - HELLDIVER

https://auditblock.report/
https://t.me/AuditBlock
https://github.com/AuditBlock
https://twitter.com/0AuditBlock

